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Quicksort: the best of sorts?

Weiss calls this ‘the fastest-known sorting
algorithm’.

Quicksort takes O N2( ) time in the worst case, but it is
easy to make it use time proportional to N Nlg  in
almost every case. It is claimed to be faster than
mergesort.

Quicksort can be made to use O Nlg( ) space – much
better than mergesort.

Quicksort is faster than Shellsort (do the tests!) but it
uses more space.

Note that we are comparing ‘in-store’ sorting algorithms here.
Quite different considerations apply if we have to sort huge
‘on-disc’ collections far too large to fit into memory.
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Quicksort is a tricky algorithm, and it’s easy to
produce a method that doesn’t work or which is
much, much slower than it need be.

Despite this, I recommend that you understand how
quicksort works. It is a glorious algorithm.

If you can’t understand quicksort, Sedgewick says that you
should stick with Shellsort.

Do you understand Shellsort? Really?
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The basic idea behind quicksort is:
partition; sort  one half; sort the other half

Input is a sequence Am n.. !1:

a if m n+ "1  then the sequence is sorted already
– do nothing;

b1 if m n+ <1 , re-arrange the sequence so that it
falls into two halves Am i.. !1 and Ai n.. !1,
swapping elements so that every number in
Am i.. !1 is (#) each number in Ai n.. !1, but not
bothering about the order of things within the
half-sequences

loosely, the first half-sequence is (#) the second;

b2 sort the half-sequences;

b3 and that’s all.
Step (b1) – called the partition step – re-arranges A into two
halves so that everything in the first half is correctly
positioned relative to everything in the second half. Then we
don’t have to merge those halves, once we’ve sorted them.
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We have seen that mergesort is O N Nlg( ), because it
is a “repeated halving” algorithm with O N( ) time
spent on the mergehalves work, and O 1( ) time spent
on the trivial case.

Quicksort, by a similar argument, will be O N Nlg( ) if
it satisfies some important provisos:

a the partitioning work, together with the re-
combination, is O N( );

b the trivial case is O 1( );

c the partitioning algorithm divides the problem
into two more-or-less equal parts at each stage.

Proviso (b) is obviously satisfied (quicksort does
nothing in the trivial case).

Proviso (a) is easy to satisfy, as we shall see.

Proviso (c) is the hard bit.
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Suppose that we have picked a value p such that about
half the values in the array are (#p) and the other half
are (p<). Then the following loop partitions the
sequence Am n.. !1 into two approximately equal halves:

P1 for (int i=m,j=n; i!=j; ) {
  if (A[i]<=p) i++;
  else
  if (p<A[j-1]) j--;
  else {
    A[i]<->A[j-1]; i++; j--;
  }
}

I’ve written A[i]<->A[j-1]; in place of a tedious sequence of
assignments. It clarifies the algorithm.

The empty INC in the for isn’t a mistake.

Notice that all we ever do is exchange elements: it’s obvious
that this program makes a permutation of the original
sequence.
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To begin with we have this picture:

untreated

m,i n,j

Each time we increase i because A pi # , or decrease j
because p Aj< !1, we expand the areas within which
we know something about the elements:

untreated

m ni j

#p p<

Don’t be misled by the picture: either of the outer partitions
might be empty – we might always increase i or always
decrease j, and never the other!

Eventually this stops because either i j= , or
¬ #( )$ ¬ <( )!A p p Ai j 1  - i.e. p A A pi j< $ #!1 . Then
we exchange Ai and Aj!1, we increase i and reduce j.

It’s still safe to terminate when i j= , because when we
increase i and reduce j together, they don’t go past each other!
We know that i j< , which is the same as i j# !1; since Ai is
(p<) and Aj!1 is (#p), we know that i j< !1; and therefore
i j+ # !1 1.
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Now P1 is not the best partitioning loop we shall see,
but it is O N( ) in time and O 1( ) in space.

If we could pick a value p which ‘partitions’ the
sequence neatly into two more-or-less equal-length

half sequences, then P1 would be the basis of an
O N Nlg( )-time algorithm.

Picking an approximately-median value p turns out to
be the whole problem.

Averaging the elements of the sequence won’t do it. Can you
see why?

Picking the middle element of the sequence - element A i j+( )÷2 –
won’t do it. Can you see why?

We could find the median element if the sequence was already
sorted ... but we’re sorting it ...
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Some choices of p are disastrous.

We build the P1 algorithm into a sorting method, and
we have

Q1 void quicksort(type[]A, int m, int n) {
  if (m+1<n) { // two values at least
    type p = ... something ...;
    for (int i=m,j=n; i!=j; ) {
      if (A[i]<=p) i++;
      else
      if (p<A[j-1]) j--;
      else {
        A[i]<->A[j-1]; i++; j--;
    }
    quicksort(A, m, i);
    quicksort(A, i, n);
  }
}

In order to be sure that the recursion will terminate,
we must be sure that the each of the sequences Am i.. !1

and Ai n.. !1 is smaller than the input Am n.. !1: that is, we
must be sure that i m%  and i n% .
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But if we pick a value p which is smaller than any in
the array, then the partition loop will never do an
exchange and will finish with i j n= =  – the ‘large
element’ partition will be empty.

If we pick a value p which is larger than any in the
array the partition loop will never do an exchange and
will finish with m i j= =  – the ‘small element’
partition will be empty.

In either case one of the recursive calls will be just the
same problem as the original. Almost certainly the
method, given the same problem, will pick the same
p, which will have the same effect as before, and the
Q1 method will loop indefinitely.
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Non-looping quicksort, with a different
partition algorithm.

An algorithm isn’t a program. quicksort is the idea ‘partition;
sort; sort’.

Pick a value p from the sequence Am n.. !1. Then re-
arrange the array so that it consists of three sub-
sequences: Am k.. !1, which contains values (#p); Ak k.. ,
which contains the value p; and Ak n+ !1 1.. , which
contains values (p<):

m nk

#p p<

k+1

p

This algorithm has an important property: it puts one element
– Ak – ‘in place’.

Because the middle partition cannot be empty, neither
of the outer partitions can be the whole array, and the
algorithm can’t loop.



18/9/2007  I2A 98 slides 6 11 Richard Bornat
Dept of Computer Science

One possible choice for p is Am.

we shall see that this is not an efficient choice, but it remains
a possible correct choice.

The partition technique used in P1 will partition
Am n+ !1 1..  using the value Am, giving

m n i,j

#p p<

m+1

p

Because of the properties of P1, either of the partitions
Am i+ !1 1.. , Aj i.. !1might be empty

then we must swap Am with Ai!1, giving

m ni-1

#p p<

i,j

p

why is always safe to make that swap?

why would it sometimes be unsafe to swap Am with Ai?

now m i% , i j! %1 ; the algorithm can’t loop!

Once we’ve put p in its place Ai!1, we call the
quicksort algorithm on Am i.. !2, call it again on Ai n.. !1,
and we are finished.
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Q2 void quicksort(type[] A, int m, int n) {
  if (m+1<n) { // two elements at least
    type p=A[m];
    for (int i=m+1,j=n; i!=j; ) {
      if (A[i]<=p) i++;
      else
      if (p<A[j-1]) j--;
      else {
        A[i]<->A[j-1]; i++; j--;
      }
    }
    A[m]=A[i-1]; A[i-1]=p;
    quicksort(A, m, i-1);
    quicksort(A, i, n);
  }
}

The work in quicksort is all in the partitioning, before the
recursive calls.

In mergesort it was all in the merging, after the recursive
calls.
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How fast will Q2 run?

In the best case the two partitions will always be
about the same size as each other, and Q2 will take
O N Nlg( ) execution time.

In the worst case p will be always be an extreme
value: one of the outer partitions will always be
empty and the other size N !1; each method call will
put one element in place; total execution time will be
O N N!( ) + !( ) + +( )1 2 1...  which is O N 2( ).

The worst case will occur just when the input
sequence is either sorted or reverse-sorted.

We will be close to the worst case when we add a few
elements to a sorted sequence and then sort the whole
thing.

Luckily, we can do much, much, better.
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Algorithms matter more than details.

The Q2 version of quicksort takes O N2( ) time rather
too often, because in practice it might rather often
pick a poor value of p.

It isn’t worth working on its details – using pointers
instead of array indices, reducing the number of
comparisons, speeding up the loop – until this major
question is solved.

 Breakpoint 1.

You have seen:

• the basic idea of quicksort;

• a particular implementation Q2, which uses a particular
selection of a ‘pivot value’ p;

• an argument that Q2 takes O N Nlg( ) time in the best case;

• an argument that in the worst case Q2 is O N 2( ) in time.
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A pleasant diversion: saving space in
quicksort.

Q2 is O N( ) in space in the same worst case that gives
O N 2( ) time: there will be N recursive calls, each
allocating O 1( ) space, none returning till the last has
finished.

But the order in which the partitioned sequences are
sorted doesn’t matter.

This sequence:

    quicksort(A, m, i-1);
    quicksort(A, i, n);

has the same effect as

    quicksort(A, i, n);
    quicksort(A, m, i-1);

Whichever order we choose, the second recursive call
can be eliminated in favour of repetition.
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We change the if to a while to play this trick:

Q3 void quicksort(type[] A, int m, int n) {
  while (m+1<n) { // two elements at least
    type p=A[m];
    for (int i=m+1,j=n; i!=j; ) {
      if (A[i]<=p) i++;
      else
      if (p<A[j-1]) j--;
      else {
        A[i]<->A[j-1]; i++; j--;
      }
    }
    A[m]=A[i-1]; A[i-1]=p;
    quicksort(A, m, i-1);
    m=i; // and repeat ...
  }
}

Now there is a reason to choose an order of sorting:
one of the halves gets sorted by a recursive call, the
other gets sorted by a repetition.
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Each recursive call uses space: to use the minimum
we give the recursive call the smaller of the two
partitions to deal with!

Q4 void quicksort(type[] A, int m, int n) {
  while (m+1<n) { // two elements at least
    type p=A[m];
    for (int i=m+1,j=n; i!=j; ) {
      if (A[i]<=p) i++;
      else
      if (p<A[j-1]) j--;
      else {
        A[i]<->A[j-1]; i++; j--;
      }
    }
    A[m]=A[i-1]; A[i-1]=p;
    if (i-1-m<n-i) {
      quicksort(A, m, i-1); m=i;
    }
    else {
      quicksort(A, i, n); n=i-1;
    }
  }
}
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The worst case for Q4, so far as space is concerned, is
when the partition given to the recursive call is at its
largest.

That happens when the partitions are equal sizes, and
the problem has been divided exactly in half!

So in its worst space case Q4 uses space proportional
to lg N  – each method call uses constant space, and
the maximum depth of the recursion is lg N .

Therefore Q4 is O Nlg( ) in space.

Breakpoint 2.

Q4 does ‘partition; sort; loop’, and that makes it O Nlg( ) in
space

But it is still O N 2( ) in time in the worst case ..
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Another diversion: quickfind.

We often want to find the ‘median value’ of a
sequence: a value m which occurs in A n0 1.. ! , such that
there are about as many values (#m) in the sequence
as there are values ("m).

Generalise that problem. Suppose we have an
unsorted array of length n, we have an index k such
that 0 # <k n, and we want to find the element which
will appear at position k of the sorted array.

The median is just the value which will appear at position n ÷ 2.

We might sort the array (taking O N Nlg( ) time if
we’re lucky) and then pick the ith element. But we
can do better.

The idea behind the quickfind algorithm, which does
the job in O N( ) time, is that the partition algorithm
(second version, above) rearranges the array so that
just one element is in place. If that’s the place you
want to look in then you’ve finished, otherwise repeat
the process with one of the two partitions.
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type quickfind(type[] A, int m, int n, int k) {
  while (m+1<n) {
    type p=A[m];
    for (int i=m+1, j=n; i!=j; )
        ... // partition loop
    A[m]=A[i-1]; A[i-1]=p;
    if (k<i-1) n=i-1;
    else
    if (i<=k) m=i;
    else break;
  }
  return A[k];
}

We shall see other versions of the partition loop; you can write
a version of quickfind based on almost any of them.

Sedgewick says this is a linear algorithm. The maths is beyond
us in this course, but I hope you are prepared to experiment –
and to read up the references in Sedgewick and in Weiss if you
are interested.
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Back to reality: speeding up quicksort.

In principle we can’t do it: there must always be a
worst-case sequence that forces quicksort to be
O N2( ) in time.

But we can make it extremely unlikely that we
will come across a worst-case sequence: just a few

possibilities out of the N! possible permutations
we might encounter.

There is a sense in which it doesn’t matter: We can
show that the average execution time of quicksort is
O N Nlg( ).

All we have to do is to be sure that the worst case
doesn’t happen very often!
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We don’t want the worst case to be something
obvious like:

• a sorted sequence;

• a reverse-sorted sequence;

• a sequence in which all the values are equal;

• an almost-sorted sequence (one in which you
have added a few elements to the beginning or
end of a sorted or reverse-sorted sequence);

• a sequence in which the first (or the last, or the
middle) number is the largest (or the smallest).

Those sorts of sequences crop up all the time. We
want our worst case to be very rare.
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Average cost calculation.
Taken from Weiss pp239-240.

The cost of an execution of quicksort consists of the
O N( ) cost of partitioning plus the cost of two
recursive calls.

The average cost will be the cost of partitioning plus
the average cost of two recursive calls.

We assume that in selecting the pivot, we are equally
likely to partition the array into ‘small elements’ and
‘large elements’ in any of the possible ways: small
elements size 0, large elements size N !1; small
elements size 1, large elements N ! 2; ... ; small
elements size N !1, large elements size 0.

If the average cost of dealing with a sequence of size
k is av k( ), then the average cost of each of the
recursive calls will be

av av ... av av0 1 2 1( ) + ( ) + + !( ) + !( )N N
N



18/9/2007  I2A 98 slides 6 24 Richard Bornat
Dept of Computer Science

The average cost of the whole execution will be
approximately

av N N av av av N av N
N

( ) = +
( ) + ( ) + + !( ) + !( )&

'
(
)

2 0 1 2 1...

This neglects the constant of proportionality in the cost of
partitioning: but if you insert it, the analysis doesn’t change.

It also neglects constant terms, but once again, it doesn’t
change the analysis.

There’s a standard way to simplify problems like
these, and with a bit of juggling we get

N N N N N Nav av av( )! !( ) !( ) = !( ) + !1 1 2 1 2 1

Ignoring the constant, and shifting terms around, you
get

N N N N Nav av( ) = +( ) !( ) +1 1 2

That in turn gives you

av avN
N

N
N N

( )
+

=
!( )

+
+1

1 2
1
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But then you can use that equation (putting N !1 in
place of N) to give you

av avN
N

N
N N

!( )
=

!( )
!

+
1 2

1
2

Substituting back into the first equation gives

av avN
N

N
N N N

( )
+

=
!( )
!

+ +
+1

2
1

2 2
1

and so on and on, until eventually

av av ...N
N N N
( )
+

=
( )

+ + + + +
+1

1
2

2
1

2
2

2 2
1

Now av 1 2( )  is a constant, and
1 1 1 2 1 1 1+ + + + +( )... N N  is, so I’m told, O Nlg( ).
So av N N( ) +( )1  is O Nlg( ), and therefore av N( ) is
O N Nlg( ).

On average this is a good algorithm; it remains to
make the worst case very, very unlikely to occur.
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Step 1: equal treatment for values (=p)

When all the values in the array are equal, the
methods so far will put them all in the left partition,
since they will all be (#p). Then Q4 is guaranteed to
take O N2( ) time.

This case arises rather often when searching large collections
of small values: for example, if we sort a large array of bytes
we are certain to produce an answer in which there are long
sub-sequences of identical elements, because there are only
256 different byte values.

The problem is that the Q4 partition is unbalanced: it
puts all the values (=p) in one half.

To remedy the problem, we have to make sure that
elements (=p) are equally likely to end up in either
partition.
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On a sequential, deterministic machine we can’t write
the algorithm so that both the non-exchange steps
accept values (=p). We have to make neither of them
accept those values:

P2     while (i!=j) {
      if (A[i]<p) i1++;
      else
      if (p<A[j-1]) j--;
      else {
        A[i]<->A[j-1]; i++; j--;
      }
    }

This partition algorithm performs more exchanges
and is therefore slower than the algorithm in Q4, but
it still takes O N( ) time to partition.

In an array of identical elements, all (=p), P2 will
achieve equal-sized partitions. That makes it more
likely that we will achieve O N Nlg( ) time.

We can make the details more expensive but reduce the overall cost.
Naively concentrating on details doesn’t always pay off.
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We begin, as before, by taking p as Am. We advance i
and j as far as they can go:

m ni

<p p<

m+1

p

j

untreated

When they stop, either i j=  and we’ve finished, or
p A A pi j# $ #!1 ; in the second case we exchange and
then advance i and j towards each other.

Putting an element (#p) in the lower segment makes
that segment (#p); similarly we have made the upper
segment (p#). That’s OK: we wanted a balanced
partition! Now we have

m ni

#p p#

m+1

p

j

untreated

And so on, we hope, until i j= . But the P2 loop has a
defect.
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When P1 does an exchange we have both i j<  and
A p Ai j# < !1. From the second we deduce that
A Ai j% !1 and therefore i j% !1; from that and the first
we deduce that i j< !1, which means that
i j+ # !1 1, and therefore increasing i and reducing j
wasn’t dangerous.

Now we have A p Ai j# # !1 and we can’t deduce that
A Ai j% !1; although i j<  and therefore i j# !1, we
can’t be sure that i j< !1.

If i j= !1 we swap that element with itself, which is a bit
wasteful but never mind.

In the case that i j= !1, the instructions i++; j--;
will make i j= +1, and the i!=j test in the for
instruction will never be satisfied.
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The exchange must produce a state in which either
i j< , i j=  or in the worst case i j= +1. We can fix
the program rather easily:

P3 while (i<j) {
  if (A[i]<p) i++;
  else
  if (p<A[j-1]) j--;
  else {
    A[i1]<->A[j-1]; i++; j--;
  }
}

You might have expected me to write i<j in P1 and
P2; I had a good reason for not doing so.

By writing i!=j I ensured that when the loop stopped,
I knew exactly what the state of the variables would
be.

When I write i<j, I have to be much more careful.
The problem now is to find where to put the pivot
value p after the array is partitioned.

We write our loops not only so that they finish, but also so that we
know how they finish.
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What might the result of partitioning be? We might
finish with a picture like this:

m ni,j

#p p#

m+1

p

– in which case we should put the pivot in Ai!1 (or we
could call it Aj!1; it’s the same element)

– or we might have a picture like this:

m nj

#p p#

m+1

p

i

=p

– in which case we should put the pivot in Aj!1.

So we must always put the pivot into Aj!1, and the
‘sort;sort’ phase then has to deal with the
subsequences Am j.. !2 and Ai n.. !1.
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The method has changed quite a bit, first to save
space and now to balance the partitions:

Q5 void quicksort(type[] A, int m, int n) {
  while (m+1<n) { // two elements at least
    type p=A[m];
    for (int i=m+1, j=n; i!=j; ) {
      if (A[i]<p) i++;
      else
      if (p<A[j-1]) j--;
      else {
        A[i]<->A[j-1]; i++; j--;
      }
    }
    A[m]=A[j-1]; A[j-1]=p;
    if (j-1-m<n-i) {
      quicksort(A, m, j-1);
      m=i;
    }
    else {
      quicksort(A, i, n);
      n=j-1;
    }
  }
}

Q5 is O N(lg ) in space and gives N Nlg  performance with
sequences of identical values.
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Looking for a better pivot.

Attempt 1: pick the middle element.

If we think that sorted and reverse-sorted sequences
and almost-sorted sequences will happen rather often,
then we will be more likely to find a value which
equally partitioned the segment if we look in the
middle:

Q6 void quicksort(type[] A, int m, int n) {
  while (m+1<n) { // two elements at least
    int k=(m+n)/2; type p=A[k];
    A[k]=A[m];
    for (int i=m+1,j=n; i<j; )
      ... // partition as P3
    A[m]=A[j-1]; A[j-1]=p;
      ... // sort; loop as Q5
  }
}

Q6 would pick a good pivot for sorted, reverse-sorted and for
almost-sorted sequences; it would also do well on sequences of
identical elements.
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Would it be hard to construct a sequence which
fooled the ‘pick the middle element’ strategy? I don’t
think so (put the largest element in the middle of the
sequence, put the next largest two in the middle of the
sub-sequences that surround it, the next largest four in
the middle of the sub-sequences that ... and so on).

But you might think that was a very unlikely
arrangement ... Perhaps so.

can you construct an argument which shows that this
‘unlikely’ arrangement is less likely than sorted, or reverse
sorted? I don’t know such an argument.
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Attempt 2: pick a random element.

We can protect ourselves against sorted sequences
and any other rationally-ordered sequence by
choosing an element at random, if we had a random-
number generator ...

What we can do is choose pseudo-randomly. It takes
constant time – a small number of multiplications and
divisions – and it’s in the Java library:

Q7 void quicksort(type[] A, int m, int n) {
 while (m+1<n) { // two elements at least
    int k = m+(random.nextInt()%(n-m));
    type p=A[k];
    A[k]=A[m];
    for (int i=m+1,j=n; i<j; )
      ... // partition as P3
    A[m]=A[j-1]; A[j-1]=p;
      ... // sort; loop as Q5
  }
}

This method uses a non-local variable random, which contains
an object of type Random: see the Java API documentation.

We can do better.
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Attempt 3: pick the best pivot out of three.

Sedgewick and Weiss suggest that we should look at
the first, the middle and the last element and find the
median of those three (which takes 2 or 3
comparisons):

Q8 void quicksort(type[] A, int m, int n) {
  while (m+1<n) { // two elements at least
    int k=(m+n)/2,
        q=A[m]<A[k] ?
             (A[k]<A[n-1] ? k :
                 (A[m]<A[n-1] ? n-1 : m)
             ) :
             (A[m]<A[n-1] ? m :
                 (A[k]<A[n-1] ? n-1 : k));
    type p=A[q];
    A[q]=A[m];
    for (int i=m+1, j=n; i<j; )
      ... // partition as P3
    A[m]=A[j-1]; A[j-1]=p;
      ... // sort; loop as Q5
  }
}
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Nowthere are very few permutations of an N-element
sequence which would force O N 2( ) time on Q8.

You might like to try to find such a permutation.

Weiss says median-of-three is as good as you need, but what
does he know? What does anyone know? Why not experiment?
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Reducing comparisons and exchanges.

Each time round the P3 loop we do two or three
comparisons: i<j, A[i]<p, p<A[j-1]. Sedgewick (and
Weiss, in his earlier book) say you should use
median-of-three to select a pivot and two others, and
use the method of sentinels to reduce the number of
times you check i<j.

I say pooh! I know better than that, I think. (You
might like to experiment; it wouldn’t be the first time
I’d been wrong about a program ...)
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Step 1: Using the method of sentinels.

Q8 looks at three values to choose a pivot: Am, Ak and
An!1. It chooses the median as p. It follows that of the
other two values, one is (#p) and the other is (p#).

We might re-arrange the array so that the value which
is (#p) is in Am+1, and the value which is (p#) is in
An!1 (smaller value at m +1 end, larger at n !1 end).

Those values are ‘sentinels’ for the partition loop. We
start with i m= + 2 and j n= ! 2. We can increase i
as long as A pi < , because the sentinel in An!1 will
stop that search if nothing else does. We can reduce j
as long as p Aj< !1, because the sentinel in Am+1 will
stop that search if nothing else does.
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In those circumstances, this loop won’t check i<j
quite as often as the ones we have seen so far:

P4 for (int i=m+2,j=n-1; i<j; ) {
  while (A[i]<p) i++;
  while (p<A[j-1]) j--;
  if (i!=j) {
    A[i]<->A[j-1]; i++; j--;
  }
}

The inner while loops can’t overrun the bounds of the
sub-sequence, because of the values in Am+1 and An!1:

• A pm+ #1  is true to begin with, and each time we
increase i we keep it true;

• p An# !1 is true to begin with, and each time we
reduce j we keep it true;

Then if i j=  we definitely do not want to swap the
elements, so we need a check for this possibility.
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We need to rearrange the array – put smallest of
A m A m n A n[ ] +( ) ÷[ ] ![ ], ,2 1  in A m +[ ]1 , median in

A m[ ], largest in A n ![ ]1  – to get the sentinels in
place.

It’s a little insertion sort, which does 2 or 3
comparisons and 1, 2, 3 or 4 exchanges:

S1 A[m+1]<->A[(m+n)/2];
if (A[m+1]>A[m]) A[m+1]<->A[m];
if (A[m]>A[n-1]) {
  A[m]<->A[n-1];
  if (A[m+1]>A[m]) A[m+1]<->A[m];
};

I claim that it’s possible to save the small amount of
work done by the exchanges, using only the pivot as
sentinel.

The algorithm came from Jon Rowson, but he can’t remember
where he found it. So some unsung author is going uncredited.
Sorry, whoever you are.
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Choose a pivot element in the array, but leave the
pivot element where it is. Run the partition loop
almost as P4, but starting with i m=  and j n= :

P5 int k=(m+n)/2,
    q=A[m]<A[k] ?
         (A[k]<A[n-1] ? k :
             (A[m]<A[n-1] ? n-1 : m)
         ) :
         (A[m]<A[n-1] ? m :
             (A[k]<A[n-1] ? n-1 : k));
type p=A[q];
for (int i=m,j=n; i<j) {
  while (A[i]<p) i++;
  while (p<A[j-1]) j--;
  if (i!=j) {
    A[i]<->A[j-1]; i++; j--;
  }
}

If this partitioning mechanisms is to work, the inner
whiles mustn’t exceed the bounds of the segment
being sorted; if it is to form the basis of a reliable
quicksort, neither of the partitions which it produces
must be the whole of the segment to be sorted.



18/9/2007  I2A 98 slides 6 43 Richard Bornat
Dept of Computer Science

On first execution of the for body, the pivot p is in
element q. It doesn’t matter where q is, provided that
m q n# < . Then we know:

• * # < $ "r m r j A pr: , because r q=  will do if
nothing else will;

• * < # $ #!s i s n A ps: 1 , because s q= +1 will
do if nothing else will.

From the first proposition we can be sure that the first
while must stop; from the second we can be sure that
the second while will stop.

From the two we can be sure that when those whiles
do stop we must have i j< ; so we will be sure to
carry out one exchange at least.

Following that first exchange we either have i j"  –
and then the for terminates – or else i j< , and then we
have:

• A pi! #1 , so * + # + < $ #+r m r j A pr:  and the
left-hand sentinel is in place;

• A pj " , so * + # + # $ "+s i s n A ps:  and the right-
hand sentinel is in place.
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The rest of the argument follows exactly the argument
that was used above to justify the operation of S1.

This version is no better than S1 in O ...( ), but it seems to avoid
a tiny bit of work, and I think it’s a neater program. That last
is a thing worth having for itself.

What this analysis shows is that we don’t need to
place sentinels: first time through the pivot does the
job; later times there must be something in each of the
end segments and we have the sentinels for free.

One oddity of this version is that at the end of the
partition loop we don’t know where the pivot is: it has
almost certainly been moved by one of the exchanges.
So we can’t put the pivot into place between the
segments.

But that doesn’t matter: it is impossible for any of the
three segments to be the entire sequence, because the
loop always does one exchange, and so the algorithm
won’t loop.
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This version can be adapted to any choice of pivot
element, though I illustrate median-of-three:

Q9 void quicksort(type[] A, int m, int n) {
  while (m+1<n) {
    int k=(m+n)/2,
        q=A[m]<A[k] ?
             (A[k]<A[n-1] ? k :
                 (A[m]<A[n-1] ? n-1 : m)
             ) :
             (A[m]<A[n-1] ? m :
                 (A[k]<A[n-1] ? n-1 : k));
    type p=A[q];
    for (int i=m,j=n; i<j) {
      while (A[i]<p) i++;
      while (p<A[j-1]) j--;
      if (i!=j) {
        A[i]<->A[j-1]; i++; j--;
      }
    }
    if (j-m<=n-i) {
      quicksort(A, m, j); m=i;
    }
    else {
      quicksort(A, i, n); n=j;
    }
  }
}
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Avoiding recursive calls when sorting
short sequences.

Recursive calls take time. Usually several times as
much as an assignment instruction.

Recall the recursive halving argument:
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... and so on, until ...

, , , , ........................................................ , , , ,

lg rows : lg

At the top level there is one call, at the next level two,
then four, and so on. Each step down halves the size
of the subproblems, at the cost of doubling the
number of recursive calls.

Half the recursive calls are in the penultimate line,
splitting problems of size 2 into problems of size 1.
Three-quarters are in that line and the line above,
splitting problems of size 4 into problems of size 2
and then 1. And so on.
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Now it seems that insertion sort, although it is O N 2( ),
is faster than quicksort on small problems – just
because of the relative cost of insertion sort’s
exchanges and quicksort’s recursive calls.

Our authorities (Sedgewick, Weiss) claim that for
values of N less than some limit N0, which they
variously put at ‘15’ or ‘anywhere between 5 and 20’,
it is faster to use insertion sort than quicksort.

The actual cutoff point will depend on the machine you are
using, the language, and the implementation of the language.

I leave it to you

• to alter the procedure to use insertion sort
appropriately;

• to show that using insertion sort (which is
O N2( )) as part of quicksort still allows us to
claim that quicksort is O N Nlg( );

• to find the point at which it is worth switching.
we do not rule out the possibility that such problems might
form the basis of an examination question.
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Engineering is about trade-offs

quicksort seems to be the best at large N, insertion
sort the best at small N. We can combine them, and
get the best of both worlds.

But we have to trade: space for speed or vice-versa,
(insertion sort uses less space than quicksort).

Sometimes we might have to trade development cost
for runtime cost, sometimes the other way round.

There are many tradeoffs of this kind.

For example: if we want to minimise the number of
exchanges, but don’t mind about the number of
comparisons, selection sort is better than any other
kind of sort.

There are no answers which are right everywhere at
every time.
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Key points
the basic idea of quicksort is “partition; sort; sort”.

quicksort can be made to be O Nlg( ) in space (worst case), and
O N Nlg( ) in time (on average).

the worst-case analysis is that quicksort is O N 2( ) in execution time, but
we can make that worst case very, very unlikely to occur.

quicksort is a subtle algorithm: it’s easy to define it so that it loops, and
it’s easy to define it sub-optimally.

most of the difficulty in defining and understanding quicksort lies in the
detail of the partition algorithm.

we can speed up our use of quicksort by using a fast O N 2( ) sort to deal
with ‘small’ sorting problems.

programming is a subtle business.

quicksort is an important algorithm, which every self-respecting
computer scientist should know and understand.
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Coda: the original quicksort.

A work of genius.

I leave it to you to deduce how it works. I leave it to
you to decide whether this version could compete
with Q9 using its own partition algorithm but
avoiding one of the recursive calls.

I have distilled this method from algorithm 63 (partition) and
64 (quicksort) in Communications of ACM vol 4, p 321,
submitted by C.A.R. Hoare.

Those algorithms were expressed in Algol 60, a wonderful
language now no longer in practical use. I’ve translated the
original into a single method to make it as understandable as
possible to a Javaglot audience.
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void OriginalQuicksort(type[] A, int m, int n) {
   if (m+1<n) {
    int k = m+(Random.nextInt()%(n-m)),
        i=m, j=n;
    type p=A[k];
    while (true) {
      while (i<n && A[i]<=p) i++;
      while (j>m && A[j-1]>=p) j--;
      if (i<j) {
        A[i]<->A[j-1]; i++; j--;
      }
      else
        break;
    }
    if (k<j) {
      A[k]<->A[j-1]; j--;
    }
    else
    if (i<=k) {
      A[i]<->A[k]; i++;
    }
    OriginalQuicksort(A, m, j);
    OriginalQuicksort(A, i, n);
  }
}


